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Abstract

In real-time rendering, the appearance of scenes is greatly affected by the quality and resolution of the textures used for image

synthesis. At the same time, the size of textures determines the performance and the memory requirements of rendering. As a

result, finding the optimal texture resolution is critical, but also a non-trivial task since the visibility of texture imperfections

depends on underlying geometry, illumination, interactions between several texture maps, and viewing positions. Ideally, we

would like to automate the task with a visibility metric, which could predict the optimal texture resolution. To maximize the

performance of such a metric, it should be trained on a given task. This, however, requires sufficient user data which is often

difficult to obtain. To address this problem, we develop a procedure for training an image visibility metric for a specific task

while reducing the effort required to collect new data. The procedure involves generating a large dataset using an existing

visibility metric followed by refining that dataset with the help of an efficient perceptual experiment. Then, such a refined

dataset is used to retune the metric. This way, we augment sparse perceptual data to a large number of per-pixel annotated

visibility maps which serve as the training data for application-specific visibility metrics. While our approach is general and

can be potentially applied for different image distortions, we demonstrate an application in a game-engine where we optimize

the resolution of various textures, such as albedo and normal maps.

CCS Concepts

• Computing methodologies → Perception; Image manipulation; Image processing;

1. Introduction

Since the beginning of computer graphics, the complexity of ren-
dered scenes evolved from small environments with basic shad-
ing to realistic-looking large-scale virtual worlds that often require
days or weeks to fully explore. One of the critical components of
these scenes is textures storing local color information in addition
to other attributes such as surface normals, geometry displacement
or reflectance properties. Since all of them significantly contribute
to the faithful reproduction of real-world appearance, their com-
plexity as well as quality is crucial for the final experience pro-
vided to a user. To address these quality demands, graphics ven-
dors develop more complex tools, such as physically based texture
painter [DOS16] or terrain generation software [Car18], which sim-
plify the process of enriching textures with details, and therefore,
increase the photo-realism of produced scenes.

Since one object may consist of many different parts and ma-
terials, the size of all textures can quickly increase with the com-
plexity of the scene. As a consequence, many games released in
recent years require a lot of memory space to store all the mate-
rial attributes, e.g., Final Fantasy XV (170 GB) or Gears of War

4 (250 GB). Large textures also impact the overall performance
by drastically increasing the loading time and memory bandwidth
to GPU, and therefore, contributing to the reduced efficiency of a
rendering engine. Textures size becomes an even more significant
problem in the context of new ultra-resolution displays or virtual
reality (VR) devices, where the quality demands with respect to
spatial and temporal resolutions are pushed to the limits, or in the
context of mobile devices, where the computational and memory
budgets are very tight [Epi18].

Texture compression and resampling are critical preprocessing
steps which address the above problem. They can balance the qual-
ity and memory requirements by trying to keep the scene descrip-
tion in the GPU memory as much as possible while minimizing
quality loss [GO15, LLPP18]. However, finding a good set of pa-
rameters for these operations is a non-trivial task. The reason for
this is twofold. First, the visibility of artifacts in one texture (e.g.,
albedo texture) is affected by the information in other textures (e.g.,
normal texture), mesh geometry, illumination, and viewing direc-
tion. Therefore, all the information should be taken into account.
Second, there is significant variability in platforms to which ren-
derings are ported. The differences include display size, resolution,
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and brightness, but also memory and performance limits [Epi18].
Therefore, it is critical to facilitate the process of compressing and
resampling textures using an automatic process. This goal can be
achieved using image metrics which are used to predict the visi-
bility of distortion for different parameters sets. Unfortunately, as
demonstrated in this as well as previous work [GO15, LLPP18],
the performance of existing metrics is suboptimal with a significant
room for improvements.

In this work, we consider the problem of automatic prediction of
an optimal texture resolution for storing albedo and normal infor-
mation during real-time rendering. The key challenge we address
is designing a reliable and precise image metric for detecting vis-
ible distortions. While several general-purpose metrics have been
proposed [MKRH11, WGY∗18], we demonstrate that their predic-
tion can be significantly improved when they are trained on a task-
specific dataset. The problem, however, is that retraining such met-
rics from scratch involves collecting a massive amount of experi-
mental data from labor-intensive user experiments such as mark-
ing experiments [WGY∗18]. To address this issue, we demonstrate
that one can retune existing metrics using the data from much sim-
pler and shorter user experiments. The main contribution of this
paper is a strategy for retuning an existing CNN-based visibility
metric [WGY∗18] (CNN-GP) with a new dataset for improving
the accuracy of prediction. CNN-GP metric was trained on a large
LocVis dataset† with locally marked distortions [WGY∗18], and
shown to outperform existing VMs, even when retrained on the
same dataset. We demonstrate the data required for retuning CNN-
GP can be collected in a modest-in-scope perceptual experiment
so that it becomes a reliable metric for selecting texture resolution.
While this paper demonstrates the performance of such procedure
in the context of texture optimization for game engines, our exper-
iment design and retuning can be potentially used also in different
applications.

2. Related work

Image metrics have been employed in many graphics applications
to improve their performance without affecting the visual qual-
ity [OHM∗04, WSR∗17]. In this section, we discuss the problem
of image quality evaluation (Section 2.1) with an emphasis on tex-
ture compression for 3D textured models (Section 2.2) and complex
texture sets (Section 2.3) that are used in modern interactive ren-
dering systems to achieve complex object appearance. While here
we focus on full reference (FR) image metrics commonly used in
computer graphics, a complete survey including also non-reference
(NR) metrics can be found in [Cha13].

2.1. Image quality and visibility metrics

It is important for our considerations to make the distinction be-
tween image quality and visibility metrics. Image quality metrics
(IQMs) such as PSNR, CIELAB, SSIM and MS-SSIM [WB06]
produce a single score that corresponds to the distortion magni-
tude. IQMs are typically trained on the mean-opinion score (MOS)

† https://doi.org/10.17863/CAM.21484

data [SSB06], which reflects the level of viewer annoyance by
such distortions. Visibility metrics (VMs) predict the perceptibil-
ity of distortions for every pixel, and typically rely on models of
early human vision (VDM [Lub95], VDP [Dal93], HDR-VDP-
2 [MKRH11]), or differences in custom feature maps (Butter-
augli [AOS∗17]). VMs are a better choice on estimating texture
compression distortion as they are precise for near-threshold dis-
tortions as opposed to IQMs, which are specialized in estimating
the supra-threshold distortion magnitude. As reported by Cadik
et al. [ČHM∗12], such general-purpose VMs might not be suit-
able for reliable detection of rendering artifacts in complex im-
ages. However, their performance can significantly be improved
when retrained on artifact-specific and per-pixel-accurate percep-
tual data [ČHM∗12, AVS∗17, WGY∗18].

Machine-learning based image metrics, which often rely on con-
volutional neural networks (CNN) [KSH12], are capable of learn-
ing important characteristics of the human vision in a “black-
box” style, and were shown to achieve the best performance
[BMM∗18, WGY∗18, ZIE∗18]. However, their ability to general-
ize over artifacts that are not present in the training data is limited.
Also, the prediction accuracy typically depends on the volume of
training data. Collecting such data for VMs is a very labor-intensive
task as they require per-pixel labeling of the distortion visibility in
complex images. The key contribution of this work is a method for
improving the performance of such data-driven metrics for a par-
ticular application.

2.2. Level-of-details for textured 3D models

Controlling level-of-detail (LoD) for textured objects poses simi-
lar challenges as our application. Mesh simplification introduces
complex interactions between texture and geometry, which influ-
ence the visibility of distortions [LM15]. Initial solutions relied on
simple geometric error measures such as texture deviation, which
accounts for a given texel motion in the object space as a result
of mesh simplification [COM98]. Following a general observation
that image-space metrics often lead to more robust quality predic-
tions [LT00], Tian and AlRegib proposed an image-space approxi-
mation of texture deviation [TA04].

The visual masking of geometry details by texture has been
widely investigated [FSPG97, QM08, HER00], and complex per-
ceptual image-space models inspired by VDM and VDP have been
proposed. Walter et al. consider using rendered textures as a masker
and create a predictor based on the quantization matrices found
in JPEG image compression [WPG02]. Computationally efficient
solutions have been proposed, where image-space visual masking
processing was moved to vertex space [MG10], or just a simple
contrast sensitivity function (CSF) was considered [WLC∗03].

Early data-driven approaches relied on perceptual experiments
that systematically measured the impact of mesh simplification and
texture resolution reduction on the perceived quality of 3D models.
A quantitative model that predicts the MOS data that were obtained
this way has been proposed in [PCB05]. Guo et al. [GVC∗16] used
slowly moving animation in a 2-alternative-forced-choice (2AFC)
experiment to account for multiple views. Based on the collected
data they propose a quality metric that linearly combines object-
geometry (e.g., the standard deviation of curvature differences) and
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image-space (MS-SSIM) components to account for geometric and
texture distortions.

As found by Larkin and O’Sullivan [LO11] silhouette simplifica-
tion is the dominant artifact that should drive mesh simplification.
In this work, we assume that mesh simplification is properly set up
and we focus on texture and shading artifacts in complex scenes,
while still considering the geometry impact on the visibility of such
artifacts.

2.3. Texture compression masking

As observed in [GO15, LLPP18], texture compression is essential
to keep the description of large scenes in the GPU memory. Multi-
ple textures describing surface reflectance (diffuse, gloss, and spec-
ular components) and geometry (normal vectors for normal map-
ping effects) are required to achieve high-quality shading. Such
textures interact not only with mesh geometry, as discussed in the
previous section, but also mutually mask each other as a function
of lighting and view directions.

Griffin et al. [GO15] investigated this effect and advocated for
evaluating texture compression directly in the scene environment
for stochastically sampled viewpoints. They observed significant
differences in CIELAB ∆E94 and SSIM metric predictions with
varying viewpoints, texture type and content, which precludes a
unified compression setup for all textures. They concluded that cur-
rent GPU compression algorithms are too conservative, and the bit
rates can be significantly reduced while maintaining the rendering
quality.

Lavoué et al. [LLPP18] performed a series of perceptual experi-
ments to investigate the masking problem between diffuse and nor-
mal textures. They ran a 2AFC experiment to derive the compres-
sion visibility threshold with respect to non-compressed reference
textures. They used planar texture patches with a fixed 128 × 128
resolution and 5 different compression levels as stimuli. They re-
ported a limited performance of existing metrics such as SSIM,
MS-SSIM, HDR-VDP2, and PSNR in predicting the perceptual
data, in particular for the normal texture compression. They com-
pared the SSIM prediction for illuminated complex geometry and
planar patches (as in their experiment), and obtained a mean cor-
relation of 0.59, which is significantly better than a naive compar-
ison of 2D compressed textures where only 0.47 correlation was
achieved. However, it can be expected that the actual correlation
between the SSIM prediction for the planar patches and the human
subject judgment for complex geometry and lighting can be even
lower.

In this work, we draw inspiration from these previous works. We
follow the approach of Griffin et al. and use rendered images to
obtain a robust measure of artifact visibility. Our rigorous 4AFC
threshold measurement procedure is similar to the one used by
Lavoué et al. However, we extend beyond those works by propos-
ing a task-specific visibility metric for texture resolution selection.
We achieve this goal by retuning an existing CNN-based metric and
propose an inexpensive way of collecting perceptual data that are
required for this task.

3. Proposed approach

The goal of our work is to provide a technique for choosing tex-
ture resolution used for rendering complex game environments.
We cannot directly use a state-of-the-art visibility metric, such as
the CNN metric proposed in [WGY∗18] (referred as CNN-GP) or
HDR-VDP-2 [MKRH11], as they are designed under the assump-
tion that the observer takes an arbitrary amount of time to attend
each region of an image. We observed that this assumption is too
conservative for our target application of a video game, in which a
player immersed in a virtual environment is less likely to spot every
small difference.

A possible solution to the above problem is to retrain the metric
using a new application-specific dataset. However, collecting new
experimental data with local marking (which is required for a vis-
ibility metric) for many objects, textures, and viewing position is
impractical due to the amount of time needed for subjective stud-
ies. Moreover, it is unclear how to design a marking experiment
that would reflect limited observation time expected in a game-like
scenario.

In this work, we demonstrate that it is possible to retune ex-
isting CNN-GP metric using a much smaller, application-specific
dataset, collected using a more efficient experimental procedure.
To this end, we collect a new dataset‡ in Experiment 1, in which
the observers are asked to determine the smallest texture size for
which quality degradation is not visible (Section 4). We also collect
a smaller dataset of local visibility maps in Experiment 2, which we
use only for validation (Section 5). Since the dataset from Experi-
ment 1 provides only a single detection probability per image, we
cannot use it directly to retune the CNN-GP metric, which requires
local information. Our key idea to overcome this problem is to ex-
ploit existing visibility metrics, such as Butteraugli, HDR-VDP-2,
or CNN-GP, and use them to produce dense visibility maps. While
these maps are inaccurate, we demonstrate that it is possible to ad-
just them using our new dataset. To do that, we first find a pooling
function (Section 6), which relates the predicted visibility maps to
the collected subjective data. Then, we generate a large set of vis-
ibility maps using three existing visibility metrics and adjust them
using the data collected in Experiment 1 (Section 7). Given the
large number of locally labelled images, we can much improve the
prediction performance for our dataset (Section 8) and demonstrate
good performance in our application (Section 9). The schematic
diagram of our pipeline is illustrated in Figure 1.

4. Experiment 1: Detection thresholds

The purpose of our first experiment was to collect data regarding
the minimum texture resolution that does not introduce visible arti-
facts in rendered objects.

Stimuli We chose 33 complex 3D models from Unreal Market
place. They include characters, creatures, buildings, and objects.
Each of them has detailed geometry, high-resolution textures, and
uses complex materials. The objects were placed in different envi-
ronments that are shipped with Unreal Engine, which allowed us to

‡ https://doi.org/10.17863/CAM.43380
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Figure 1: The procedure for retuning a visibility metric. The reference and distorted images are used to generate the distortion visibility

maps by one of existing VMs. Then, the thresholds from an application-specific perceptual experiment and pooled probabilities are used to

adjust the visibility in the map. The resulted data is used for retuning a CNN-based metric that computes application-specific visibility maps.

To asses the optimal texture resolution for target application the resulting visibility map is pooled to a single artifact detection probability

value using same pooling strategy as one used for visibility adjustment.

analyze the objects’ appearance under different illumination con-
ditions: directional light, point light, spotlight, skylight, and pre-
computed light probe. For each object, we considered one or two
unique camera positions to capture texture details and shading vari-
ations. We rendered the scenes using the Unreal Engine 4 [Kar13].
The target objects were outlined with a red stroke to prevent them
from blending with the background.

We created stimuli for the experiment by rendering the scenes
with different resolutions of albedo and normal maps. We started
with a resolution of 1024×1024 pixels for each texture, and we de-
creased it in 20-pixel steps down to 24×24 pixels. To limit the num-
ber of stimuli, we considered five different downscaling scenarios:
reducing the resolution of (1) the albedo map only, (2) the normal
map only, (3) both the normal and the albedo maps by the same
amount, (4) the normal map twice as much as the albedo map, and
(5) the albedo map twice as much as the normal map. The down-
scaling was performed using Lanczos filter. Using the above proce-
dure, we generated 127 scenes with 51 combinations of resolutions
for albedo and normal maps, which resulted in 6477 images. An
example of stimuli is presented in Figure 2.

For rendering, we did not consider texture compression as it was
done in [LLPP18]. Instead, we used a non-compressed RGB format
due to Unreal Engine 4 design philosophy to refrain from texture
compression until final packaging. This philosophy is motivated
by the fact that each platform has different requirements regard-
ing CPU, GPU, memory, and texture format. Another concern is
that a mipmap level alone could determine the optimum texture
resolution. For example, if the rendered image refers at most to the
mipmap level 1 and never refers to mipmap level 0 (the highest
resolution), we know that the resolution could be reduced by half.
For that reason we selected the maximum texture resolution so that
mipmap level 0 is used for the most of the rendered pixels. After
ensuring this, we disabled mipmapping as UE4 does not support
mipmapping for non-power-of-two textures (see the discussion and
examples in the supplementary).

Experimental procedure Each session of our experiment was
split into two phases: a method-of-adjustment (MoA) phase, giving

Figure 2: Example of one scene from the dataset with 3 texture

resolution variants of albedo map: highest resolution (left), medium

resolution (middle), and lowest resolution (right). The target object

in the scene has a red outline to prevent it from blending with the

background.

an initial estimate of the detection threshold, and a four-alternative-
forced-choice (4AFC) phase, which refined the initial estimates. In
the MoA phase, the observer’s task was to adjust the texture res-
olution with the up/down arrow keys, so that the difference with
respect to the reference is barely visible. A screenshot from that
phase is shown in Figure 3. When switching between two texture
resolutions, a short (0.5 second) blank screen with the color of the
background was shown so that the observers could not use temporal
changes to locate the artifacts.

The second 4AFC phase of the experiment was a modified
QUEST procedure [WP83]. Four images were presented to the ob-
server, where only one image was distorted. The position of the dis-
torted images was randomized. The observer was asked to choose
the image that was different from the others. We used 4AFC as
it needs fewer trials to converge than 2AFC because of the lower
guess rate, while it gives similar results [VRH∗18]. The QUEST
adaptive method was initialized with the threshold estimate col-
lected using the MoA method in the first phase. The QUEST tri-
als for different scenes were interleaved so that each trail typically
showed a different scene. This was done to prevent the observer
from learning the location of distortions. Between 25 and 30 4AFC
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Figure 3: Screenshot from the method-of-adjustment (MoA) phase

of the experiment. On the left is the reference image rendered with

the highest texture resolution, and on the right is the distorted im-

age with reduced texture resolution.

Figure 4: Screenshot from the 4AFC phase of the experiment. The

observer’s task is to choose the image that is different from the

others.

trials were collected from each observer for each scene. The pre-
sentation time of each trial was limited to 10 seconds to ensure that
the data reflects a more realistic scenario of viewing rendered mod-
els in a game environment. The screenshot from the second phase
is shown in Figure 4.

Viewing conditions The experiment room was darkened and the
monitor was positioned to minimize screen reflections. The ob-
servers sat 96 cm from a 24′′, 3840×2160 resolution Eizo CH246-
4K display, resulting in an angular resolution of 120 pixels per vi-
sual degree. As such resolution is much higher than for a standard
monitor seen from a typical viewing distance (45–60 pixels per vi-
sual degree), we enlarged the images to twice their original size
using the nearest neighbor filter. The measured peak luminance of

the display was 120 cd/m2 and the black level was 0.17 cd/m2. The
display was calibrated to the sRGB color space using its built-in
self-calibration functionality.

Observers To reduce the effect of fatigue, the experiment was split
into 9 sessions, where each session lasted less than one hour. Each
participant completed a subset of these sessions so that the thresh-
old for each scene was measured by 10 participants. All observers
(aged 21 to 27) were computer science students or researchers. The
observers were paid for their participation. All observers had nor-
mal or corrected-to-normal vision and were naive to the purpose of
the experiment.

4.1. Cross-population psychometric function

To use the data collected in the experiment for training, we need
to estimate a cross-population psychometric function: the function
that explains what portion of the population can see the difference
at a particular texture resolution for a given scene, as shown in Fig-
ure 5. To find such a function, we first fitted a psychometric func-
tion per each observer to the QUEST trial responses and estimated
a 75%-probability threshold. Then, the outliers were removed by
eliminating per-observer thresholds that were more than two stan-
dard deviations away from the mean. Assuming that the thresh-
old texture resolution is distributed normally in a population, we
can model the cross-population probability of detection Pdet as a
(negated) cumulative normal distribution:

Pdet(r) = 1−Θ(r;µ,σ) = 1−
1
2

[

1+ erf

(

r−µ

σ
√

2

)]

(1)

where Θ is the cumulative normal distribution, r is the texture res-
olution in pixels, erf() is the Gauss error function, and µ, σ are the
distribution parameters. The parameters can be found by comput-
ing the mean and standard deviation of per-observer thresholds.
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Figure 5: Cross-population psychometric function explaining what

portion of the population can see the difference between the refer-

ence image with full-resolution textures and a test image in which

the texture resolution was reduced.

5. Experiment 2: Local visibility maps

The goal of the second experiment was to collect a validation
dataset with local visibility maps. We use this dataset to show the
differences between both experimental protocols, but also to test
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Figure 6: The relation between the measured thresholds from Ex-

periments 1 and 2. The scatter plots show the relationship between

the maximum value (left) and 95th percentile (right) computed from

the local visibility maps (Experiment 2) and the detection thresh-

olds found in Experiment 1.

our retuning procedure. We used the same experimental protocol
as in [WGY∗18], in which observers painted visible difference in
images. Because the protocol is time-consuming, this experiment
was feasible for only a subset of 32 from over 6477 images used
Experiment 1. The monitor and viewing conditions were identical
to those in Experiment 1.

Experimental procedure An observer was presented distorted
and reference images side-by-side. She was then asked to carefully
mark all the areas where artifacts are visible in the distorted im-
age using a brush of adjustable size. The final visibility maps were
obtained by averaging per-observer maps.

Observers 10 participants were recruited from the same demo-
graphic group as for Experiment 1. Most of the observers were new
participants and only a few observers completed both experiments.

6. Pooling for task-specific visibility threshold

Our goal is to determine the texture resolution for which less than
20% of observers are going to notice any artifacts. One obvious ap-
proach is to run a visibility metric, such as CNN-GP or HDR-VDP-
2, at every resolution level and use the predictions to determine the
desired detection threshold. But, since each of these metrics pre-
dicts local visibility maps, where each pixel has associated proba-
bility of detection, we need to pool the values from the map into a
single value that corresponds to the desired threshold.

For a conservative threshold, we could use the maximum value
from the visibility map, as done in [AOS∗17] and [WGY∗18]. Such
approach, however, suffers from two problems. Firstly, it assumes
that every observer will always spot the most visible distortion.
While this assumption is valid for a well-controlled marking ex-
periment (Experiment 2), in which observers scrutinize every part
of an image, it does not hold for the detection experiment (Experi-
ment 1), or the target application of texture rendering. In less con-
trolled conditions, different observers are going to spot different

distortions, and only few will spot the one that is the most visi-
ble. This is illustrated in Figure 6 (left), where we plot the detec-
tion thresholds from Experiment 1, vs. the maximum value from
the local visibility maps from Experiment 2. The plot on the right
in the same figure shows that discarding the top 5% of the values
(95th percentile) when pooling improves the relation between both
datasets. Secondly, the maximum value is strongly affected by the
prediction error. If we were to compute an average value across the
visibility map, we could expect that a portion of the prediction error
would cancel out. However, if we rely on a single maximum value,
we cannot take advantage of averaging multiple predicted values.

To find a task-specific visibility threshold, we tested a number of
pooling strategies on the predictions of three state-of-the-art visi-
bility metrics: CNN-GP [WGY∗18], HDR-VDP-2 [MKRH11] and
Butteraugli [AOS∗17]. The goal is to find a pooling that provides
the lowest prediction error for the thresholds determined in Exper-
iment 1. Firstly, we tested ten percentiles, from 90th to 99th. Sec-
ondly, we used a trainable pooling function realized by a neural net-
work as shown in Figure 7. The network was composed of four con-
volutional layers interspersed with max-pooling layers and termi-
nates with three fully connected layers, the last of which produces a
scalar. To prevent over-fitting, we used 5-fold cross-validation with
an 80:20 split between training and testing data.

An optimal pooling strategy is determined for each of the three
metrics as follows. We run a given metric for each scene on all pos-
sible texture resolutions and consider all pooling strategies to find
the probability of detection. To regularize the predictions across
the resolution levels, we fit for each pooling strategy a psychomet-
ric function from Equation 1. Then, we compute a mean-absolute-
error (MAE) between texture threshold resolution found in Exper-
iment 1, and the texture resolution corresponding to the assumed
20% of probability of artifact detection derived from the psychome-
tric function for this pooling option. We repeat this procedure for
all scenes. The lowest prediction error was achieved for 93rd per-
centile for CNN-GP and Butteraugli, and 94th percentile for HDR-
VDP-2. We were not able to train NN to provide higher correlation
than these percentiles. Figure 8 gives an example of a single scene
for which the psychometric functions were fitted for all the tested
metrics. In Figure 8 we also present the maximum error value as
a pooling option, which we denote as CNN-GP-Max. When com-
paring the match of CNN-GP-Max and CNN-GP-P93 to the ex-
perimental results, the benefits our pooling optimization are clearly
visible.

Figure 9 compares optimal percentile pooling (continuous lines)
to the results achieved with max-value pooling (dashed lines). The
results are shown as an error histogram over all available scenes.
The plots show that the trainable pooling also reduced the predic-
tion error as compared to naïve max-value pooling, but provided
worse results than the best percentile strategy.

7. Metric retuning

Although the percentile pooling much improves the prediction per-
formance, it is too simple to account for complex changes in visibil-
ity thresholds in our application of texture rendering. We have also
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Figure 7: The architecture of the CNN used for predicting the

pooled threshold. Each convolution layer shows the number of ker-

nels and the size of each one. The final fully connected layers show

the number of neurons.

Figure 8: Metric predictions (dashed lines, only for CNN-GP-Max,

HDR-VDP-P94, and Butteraugli-P93) and psychometric functions

fits (continuous lines) for a chosen scene. The desired resolution is

selected for the probability of detection 0.2.

shown that complex NN-based pooling generally does not provide
better performance. To further improve the metric performance, we
need to retune it to a new application. As the CNN-GP provides the
most flexibility of retraining, we focus on this metric.

7.1. Retuning dataset

Before CNN-GP can be retuned for our texture optimization ap-
plication, we need to generate a dataset consisting of pairs of refer-
ence and distorted images and the corresponding per-pixel visibility
maps. Having such maps is vital for training a CNN-based metric,
which operates on patches. Since our experiment does not provide
per-pixel visibility information, we use instead existing visibility
metrics, CNN-GP itself, HDR-VDP-2 and Butteraugli, to generate
such maps. Each of these metrics was previously re-trained on the
LocVis dataset as described in [WGY∗18], which made them more
accurate and robust to a broad set of artifact types. As the visibility
maps predicted by existing metrics are not suitable for the target
application because of the reasons outlined in Section 3, they need
to be adjusted using the newly collected experimental data. The
overview of the retuning procedure is illustrated in Figure 1.

First, we need to understand how visibility maps are produced
by each visibility metric. Chosen visibility metrics involve several
stages of spatial processing and point-wise nonlinearities, which

Figure 9: Histograms of the error distribution for pooled proba-

bility value for scenes considered in Experiment 1. The error is

expressed as signed texture resolution (both horizontal and ver-

tical) differences in pixel units with respect to the experimental

observer data. The percentile pooling (continuous lines) results in

much lower maximum absolute error (MAE) values than naïve max

value pooling (dashed lines). Trainable pooling strategy (NN Pool-

ing) also performs reasonably well.

culminate in transforming their semi-final output, a perceptually-
normalized difference of contrast C, into probabilities using a sig-
moidal psychometric function ψ:

P̃det(x,y) = ψ(C(x,y)) , (2)

where x and y are pixel coordinates. The per-image probability of
detection is computed as the the optimal percentile value (Sec-
tion 6) of P̃det over the image. CNN-GP uses a standard, non-
parametrized sigmoid function:

ψCNN(c) =
1

1+ e−c
(3)

In HDR-VDP-2 and Butteraugli the psychometric function has the
form:

ψ(c) = 1− e
ln(0.5)cβ

, (4)

where c is the image difference (in perceptual contrast space) and β

(typically 3.5) controls the slope of the psychometric function. Be-
cause the psychometric function ψ saturates at large positive and
negative values and introduces the loss of information after dis-
cretization, we need to adjust the values of difference contrast C

rather than probabilities P̃det to generate visibility maps consistent
with our experiment. This means that for each series of images cor-
responding to the texture resolution of particular scene, we find a
linear transformation of C that, when transformed by Equation 2
and pooled using the 93rd percentile, results in the detection thresh-
old closest to the Experiment 1 results (in terms of MSE). The best
linear transform is found using exhaustive search over the range
of bias values. The adjustment is illustrated in Figure 10 in which
the original metric predictions (dashed blue line) over-predicts the
probability of detection. However, after adjusting C, the predictions
(solid blue line) are close to the experimental data (pink line).

We separately generate three retuning datasets, each using a dif-
ferent visibility metric: CNN-GP, HDR-VDP-2, and Butteraugli.
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Figure 10: Adjusted CNN-GP prediction (solid blue line) bet-

ter matches observer cross-population psychometric function (pink

line) than original CNN-GP prediction (dashed blue line).

Each dataset consists of all images used in the experiment: 51
down-sampling factors, 33 3D models and all 127 variants. If the
pooled value of the adjusted visibility maps differs by more than
0.05 from our experimental data, we remove that image from the
dataset. This results in an extensive set of approximately 3,000 im-
age pairs and per-pixel visibility maps, suitable for training a CNN-
based metric.

7.2. Loss function

In [WGY∗18], the authors proposed a probabilistic loss function,
which was designed to account for inaccuracies of manual mark-
ing but also to conservatively predicts all visible distortions, even
those that are more difficult to find. However, since our dataset is
automatically generated by the metrics and accounting for the diffi-
culty of finding artifacts is essential for our application, such a loss
function is unsuitable.

To match probability predictions to the generated dataset, we
have experimented with Kullback-Leibler KL-divergence, but that
resulted in poor predictions. Instead, we use the loss that penalizes
probability differences close to the range bounds:

L =

√

∑
(x,y)∈Θ

[

g(plabel(x,y))−g(ppred(x,y))
]2
, (5)

where:

g(v) = ln
v+ ε

1− v+ ε
, (6)

Θ is the set of all pixels with coordinates (x, y), plabel is the target
probability generated in the adjustment process, ppred is the metric
prediction and ε is a small constant.

7.3. Transfer learning and testing performance

The dataset is partitioned into 5 equal parts for 5-fold cross-
validation. Each 3D object/texture is present in only one fold. The
network is initialized with the weights used in the original CNN-
GP metric and then retrained over 50000 iterations using the new
dataset. We experimented with training only the final convolutional
layers or the entire network and achieved very similar results. We
report the results for the latter.

The CNN is trained on 48×48 pixel non-overlapping patches
with a batch size of 128, in Tensorflow v.1.7.0 § with Python v3.6.
We use Adam optimizer [?] with the learning rate of 0.00001 and
set the dropout to 0.5.

The metric is intended for offline use. Processing of one
800×600 image takes about 3,5 seconds on Nvidia GeForce GTX
1070 and Intel Xeon E5-1650.

8. Results

First, we want to determine which of the existing visibility metrics
produces the retuning dataset that gives the best predictions. We de-
note new metrics trained on the three retuning datasets as CNN-T-
CNN-GP-P93, CNN-T-Butteraugli-P93, CNN-T-HDR-VDP-P94,
where the label contains CNN-T (CNN reTunned), followed by the
name of the existing metric used to generate the retuning dataset
and the percentile pooling function. To evaluate the accuracy of re-
tuned metrics we used the same approach as described in Section 6
and summarized in Figure 8. We run each metric on all possible
texture resolutions and use the optimal percentile of the visibility
map to find the probability of detection for each resolution. Then,
we fit a psychometric function and compute a prediction error for
threshold 0.2. Please refer to the supplemental material for the re-
sults computed using different threshold values.

The results of 5-fold cross-validation are shown as the histogram
of errors in Figure 11. The legend includes the maximum-absolute-
error (MAE), which we use instead of RMSE as it is more robust
to outliers. The top plot shows that CNN-T-CNN-GP-P93 results in
a lower prediction error than CNN-T-Butteraugli-P93 and CNN-T-
HDR-VDP-P94. The distribution for the latter ones is also skewed
towards predicting lower resolution.

Second, we show the improvement obtained by retuning the met-
rics as compared to using existing metrics with the percentile pool-
ing. The middle plot of Figure 11 shows that the prediction error of
CNN-GP was reduced from MAE=184 to MAE=115 after retun-
ing, demonstrating that retuning is an effective mean of improving
metric predictions. The plot also shows that CNN-GP retuned us-
ing a dataset generated with HDR-VDP-2 or Butteraugli performs
better than the original metrics.

Finally, we compare our best performing metric (CNN-T-CNN-
GP-P93) with the predictions of the existing visibility metrics:
CNN-GP [WGY∗18], and SSIM, which was found to be a good
indicator of texture distortions [LLPP18]. We use T-SSIM ver-
sion, which was augmented with the psychometric function in
[WGY∗18] to predict visibility rather than image quality. For a
fair comparison, we also retrained T-SSIM on the same dataset as
CNN-T-CNN-GP-P93. We denote such a retuned SSIM as SSIM-T-
CNN-GP-P93. The bottom plot of Figure 11 shows very substantial
improvement obtained by our retuning procedure, as compared to
the existing visibility metrics. The predictions of retuned SSIM-T-
CNN-GP-P93 are much improved as compared to T-SSIM, but still
much worse than those of the retuned CNN-T-CNN-GP-P93.

§ https://www.tensorflow.org/
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Figure 11: The error distribution for the retuned and existing met-

rics. Top: comparison of three retuning datasets. Middle: the per-

formance gain of retuning as compared to pooling. Bottom: com-

parison with the existing metrics. The existing visibility metrics,

CNN-GP and T-SSIM, predict the threshold for higher than re-

quired texture resolution (bottom). The prediction error in his-

tograms is expressed as signed texture resolution differences (both

horizontal and vertical) in pixel units with respect to the experi-

mental data. The value in the legend denotes mean-absolute-error

(MAE).

8.1. Visibility map improvement

Despite the fact that our target application requires only a single
pooled value, we can also observe improvement in the visibility
map predictions. To evaluate visibility maps predictions, we com-
pare them to 32 manually marked visibility maps from Experi-
ment 2. Table 1 shows that the retrained metrics improve predic-
tions over the vanilla CNN-GP metric for the probabilistic loss
from [WGY∗18]. We compared maps using the following indica-
tors: Pearson correlation coefficient (r), Spearman correlation coef-

Image Metric r ρ RMSE Loss
CNN-GP 0.706 0.789 0.214 0.311
CNN-T-CNN-GP-P93 0.792 0.832 0.179 0.272
CNN-T-Butteraugli-P93 0.663 0.769 0.2 0.285
CNN-T-HDR-VDP-P94 0.715 0.791 0.167 0.248

Table 1: All indicators show that retuned metrics provide visibility

with higher accuracy than general-purpose metric CNN-GP.

ficient (ρ), Root Mean Squared Error (RMSE), and the loss func-
tion described in Section 7.2 (Loss). The best performing CNN-T-
CNN-GP-P93 improves the predictions for all performance mea-
sures. For visual examples of improvement please refer to the sup-
plemental material.

9. Texture size optimization

To test performance in reducing the texture resolution without in-
troducing visible artifacts, we generated a new set of 3D mod-
els. Four of them: TreasureBox, Plant, DemonDoor, and Angel-

Statue are presented in Figure 12. Initially, all of them are tex-
tured with albedo and normal maps at the original texture resolution
of 1024×1024. We placed the models in different environments,
which provide realistic lighting.

To determine the minimum texture resolutions, we first sample
viewing and illumination directions from those that can be encoun-
tered in a game scenario. In Figure 13, we show 5 out of 8 such
views (all 8 used views are shown in the supplemental material).
Next, each view is rendered using all possible combinations of
normal and albedo map resolutions. Here, we restrict our choice
to resolutions equal to the powers-of-two, which are more rele-
vant for the game-engine application. All scene renderings are then
compared to the reference rendering with full-resolution textures
using the proposed visibility metric (CNN-T-CNN-GP-P93). The
outcome of this prediction is summarized in the tables shown in
Figure 13, which contain the probability of spotting artifacts for all
combinations of normal and albedo map resolutions. Given these
matrices, we can choose the combination which results in the small-
est memory footprint and at the same time meets our visibility cri-
terion. One possible example of such a criterion could be that at
most 10% of the sampled views have the probability of detection
greater than 0.2. Table 2 summarizes the optimal texture size selec-
tion and the resulting reduction in memory footprint. It shows that
the optimal texture resolution varies substantially with the model,
making it hard to manually choose the right texture configuration.
The proposed metric can greatly facilitate this task.

Figure 12 shows the final rendering of two scenes using opti-
mized texture size in comparison to reference textures and sub-
optimal texture size choice. In Plant scene leaf veins are the most
important fine details. The image rendered with optimal texture size
preserves these details, while for the rendering with the sub-optimal
texture resolution, they tend to get blurred. In the second exam-
ple, TreasureBox, the emblem on the chest’s lid gets darker due to
downsampling of albedo texture. The artifact is not present in the
optimal resolution image. In AngelStatue scene, high-frequency
stone is present on the surface. For optimal texture resolution, the
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Scene
Albedo [px] Normal [px] Memory [MB]

before after before after before after
TreasureBox 1024 512 1024 512 8 2

Plant 1024 512 1024 128 8 1.1
DeamonDoor 1024 256 1024 128 8 0.3
AngelStatue 1024 512 1024 512 8 2

King 1024 1024 1024 1024 8 8

Table 2: The texture size reductions guided by the proposed metric

and the corresponding memory savings. The resolution reported for

the scenes shown in Figure 13.

pattern remains preserved. It is not true for the sub-optimal texture
resolution. In the last scene DeamonDoor, we can observe cracks
and scratches on the horns. Once again, the details are correctly pre-
served for optimized textures while they disappear when the sub-
optimal textures are used.

The results in Figure 13 demonstrate a general trend where nor-
mal maps can be reduced to lower resolutions than albedo maps.
We can also notice an interaction between the textures. For exam-
ple for the Plant model the lower resolution of the albedo map re-
sults in strong artifact visibility with a relatively weak impact of the
normal texture resolution. In TreasureBox for most of the camera
positions both the albedo and normal texture resolutions are impor-
tant and only moderate resolution reduction is possible (refer also
to Table 2). In the King scene the mesh contains spikes and horns
sticking out of the body, which causes the object surface to be big-
ger compared to other scenes. Because of that, the texel density is
lower and texture resolution can not be reduced without introducing
visible artifacts.

10. Limitations

As any learning-based method, the proposed visibility metric is re-
stricted to the examples that are close to the training dataset. For ex-
ample, our dataset considers only albedo and normal maps, while
3D assets may also contain specularity, transparency, anisotropy
and other types of texture maps, for which our metric can be less
accurate. Unlike white-box visibility metrics, such as HDR-VDP,
our metric does not account for the display parameters (peak bright-
ness, contrast) and viewing distance. We would like to address these
limitations in future work.

11. Conclusions

Predicting the visibility of artifacts in rendering is a challenging
task. Existing state-of-the-art metrics are often trained for a spe-
cific task, such as detecting side-by-side difference, which may
not be applicable in many scenarios, and therefore, lead to over-
conservative predictions. We demonstrate how a CNN-based met-
ric can be easily retuned for a specific task using a dataset collected
with limited effort. Such retuning leads to a greatly improved pre-
diction performance, which let us use our new metric in a practical
application of optimizing the texture resolution of 3D assets.
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Figure 12: Examples of texture size optimization. From left in each row: rendering with a low probability of detecting the artifacts, rendering

with full texture resolutions, and with a high probability of detection. The following three images in the row detail respectively the regions in

the boxes. For proper viewing conditions at the 60 cm viewing distance, the images and the insets should span 9 cm and 3 cm on the screen,

respectively.
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Plant

1024 512 256 128 64

1024 0.03 0.39 0.94 1

512 0 0.04 0.44 0.95 1

256 0 0.06 0.49 0.96 1

128 0.02 0.13 0.58 0.96 1

64 0.06 0.25 0.69 0.97 1

1024 512 256 128 64

1024 0.04 0.4 0.93 0.99

512 0 0.04 0.44 0.94 0.99

256 0 0.06 0.51 0.95 1

128 0.02 0.12 0.62 0.96 1

64 0.05 0.2 0.71 0.97 1

1024 512 256 128 64

1024 0.01 0.08 0.41 0.8

512 0 0.02 0.09 0.43 0.81

256 0 0.02 0.1 0.44 0.82

128 0.01 0.04 0.14 0.49 0.83

64 0.04 0.09 0.24 0.58 0.86

1024 512 256 128 64

1024 0.05 0.68 0.99 1

512 0 0.06 0.71 1 1

256 0.01 0.08 0.75 1 1

128 0.03 0.16 0.82 1 1

64 0.07 0.29 0.89 1 1

1024 512 256 128 64

1024 0.02 0.34 0.87 0.98

512 0 0.03 0.36 0.87 0.98

256 0 0.03 0.38 0.88 0.99

128 0 0.03 0.4 0.89 0.99

64 0 0.03 0.41 0.89 0.99

TreasureBox

1024 512 256 128 64

1024 0.08 0.64 0.98 1

512 0.01 0.11 0.69 0.98 1

256 0.04 0.21 0.78 0.99 1

128 0.44 0.64 0.92 1 1

64 0.92 0.96 0.99 1 1

1024 512 256 128 64

1024 0.05 0.76 0.99 1

512 0.01 0.07 0.8 0.99 1

256 0.09 0.28 0.87 0.99 1

128 0.72 0.83 0.97 1 1

64 0.95 0.97 1 1 1

1024 512 256 128 64

1024 0.04 0.39 0.88 0.96

512 0 0.07 0.45 0.89 0.96

256 0.04 0.18 0.62 0.92 0.97

128 0.49 0.59 0.81 0.96 0.98

64 0.83 0.86 0.92 0.98 0.99

1024 512 256 128 64

1024 0.1 0.7 0.99 1

512 0.02 0.15 0.75 0.99 1

256 0.19 0.42 0.85 0.99 1

128 0.91 0.95 0.99 1 1

64 0.99 1 1 1 1

1024 512 256 128 64

1024 0.11 0.78 0.99 1

512 0.01 0.15 0.8 0.99 1

256 0.15 0.41 0.89 0.99 1

128 0.81 0.9 0.98 1 1

64 0.98 0.99 1 1 1

King

1024 512 256 128 64

1024 0.84 1 1 1

512 0.07 0.87 1 1 1

256 0.58 0.95 1 1 1

128 0.91 0.99 1 1 1

64 0.98 1 1 1 1

1024 512 256 128 64

1024 0.82 1 1 1

512 0.17 0.88 1 1 1

256 0.83 0.97 1 1 1

128 0.96 0.99 1 1 1

64 0.99 1 1 1 1

1024 512 256 128 64

1024 0.96 1 1 1

512 0.18 0.98 1 1 1

256 0.8 1 1 1 1

128 0.95 1 1 1 1

64 0.99 1 1 1 1

1024 512 256 128 64

1024 0.96 1 1 1

512 0.18 0.98 1 1 1

256 0.8 1 1 1 1

128 0.95 1 1 1 1

64 0.99 1 1 1 1

1024 512 256 128 64

1024 0.13 0.66 0.95 1

512 0.01 0.15 0.67 0.96 1

256 0.02 0.2 0.69 0.96 1

128 0.07 0.33 0.75 0.96 1

64 0.18 0.47 0.79 0.96 1

Figure 13: Examples of 5 views rendered using reference texture (rows) and the corresponding metric predictions for all combinations of

normal and albedo texture resolutions. The columns in the tables represent variation in the albedo map resolution, and the rows the variation

in the normal map resolution. The color coding represents the probability of detection, from 0 (green, invisible) to 1 (red, definitely visible).
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